Forschungsanstalt Geisenheim

Abschlussbericht des FDW-Projektes:
„Bestimmung der Traubenqualität unter Berücksichtigung der hieraus resultierenden Weinqualität mit Hilfe der mittleren Infrarotspektroskopie (FTIR)“

Projektbearbeitung:
Hieber M., Patz C.-D., Dietrich H.
Institut für Oenologie und Getränkeforschung
Fachgebiet Weinanalytik und Getränkeforschung
Forschungsanstalt Geisenheim, Postfach 1154, 65358 Geisenheim

Geisenheim, 24.10.2005
Inhaltsverzeichnis

1. Einleitung ... 1
2. Literaturreihsicht ... 3
3. Theoretische Grundlagen.. 6
 3.1. IR-Spektroskopie ... 6
 3.2. Multivariate Datenanalyse ... 9
 3.2.1 Filterselektion .. 9
 3.2.2 Partial Least Square-Regression (PLS) ... 10
 3.2.3. Kalibrierung .. 11
 3.2.4 Validierung .. 13
4. Material und Methoden .. 17
 4.1 Untersuchungsmaterial ... 17
 4.1.1 Most ... 17
 4.1.1. Standardlösungen .. 19
 4.2 Methoden .. 20
 4.2.1 Referenzmethoden ... 20
 4.2.2 IR-Spektrometrie ... 22
5. Ergebnisse... 24
 5.1 Beurteilung der Traubenreife .. 24
 5.2 Beurteilung des Gesundheitszustands .. 25
 5.3 Erweiterung der Kalibrierung um weitere wichtige Parameter 31
 5.4 Vergleich verschiedener Faktoren ... 32
 5.4.1 °Oechsle ... 35
 5.4.2 Gesamtsäure .. 37
 5.5 Kontrolle des Reifeverlaufs ... 38
 5.6 Gärkontrolle .. 40
 5.7 Konservierung von Mosten ... 42
 5.8 Standardadditionen ... 43
 5.9 Bestimmung von Ammonium und hefeverwertbarem Stickstoff 48
6. Diskussion .. 51
 6.1. Bestimmung der Reife- und Gesundheitsparameter .. 51
 6.2 Erstellung neuer Parameter .. 52
 6.3 Vergleich verschiedener Faktoren ... 53
 6.4 Überprüfung des Reifeverlaufs ... 54
 6.5 Gärkontrolle .. 54
 6.6 Konservierung von Mosten ... 55
 6.7 Standardaddition ... 55
 6.8 Bestimmung von Ammonium und hefeverwertbarem Stickstoff 56
7. Zusammenfassung .. 58
8. Literatur .. 61
<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>°Oe</td>
<td>° Oechsle</td>
</tr>
<tr>
<td>AAS</td>
<td>Atomabsorptionspektroskopie</td>
</tr>
<tr>
<td>ber.</td>
<td>berechnet</td>
</tr>
<tr>
<td>bias</td>
<td>engl.: systematische Fehler</td>
</tr>
<tr>
<td>BSA</td>
<td>biologischer Säureabbau</td>
</tr>
<tr>
<td>engl.</td>
<td>englisch</td>
</tr>
<tr>
<td>CVE</td>
<td>Fehler der Kreuzvalidierung (Cross Validation Error)</td>
</tr>
<tr>
<td>FIR</td>
<td>Ferninfrarot</td>
</tr>
<tr>
<td>FT-NIR</td>
<td>Fourier-Transform-Nahinfrarotspektrometrie</td>
</tr>
<tr>
<td>FTIR</td>
<td>Fourier-Transform-Infrarotspektrometrie</td>
</tr>
<tr>
<td>FT-MIR</td>
<td>Fourier-Transform-Mittelinfrarotspektrometrie</td>
</tr>
<tr>
<td>HPLC</td>
<td>Hochdruckflüssigkeitschromatographie</td>
</tr>
<tr>
<td>i</td>
<td>i-te Messung</td>
</tr>
<tr>
<td>intersept</td>
<td>engl.: Achsenabschnitt</td>
</tr>
<tr>
<td>IR</td>
<td>Infrarot</td>
</tr>
<tr>
<td>Max</td>
<td>Maximum</td>
</tr>
<tr>
<td>Min</td>
<td>Minimum</td>
</tr>
<tr>
<td>MIR</td>
<td>Mittelinfrarot</td>
</tr>
<tr>
<td>MLR</td>
<td>multiple lineare Regression</td>
</tr>
<tr>
<td>n</td>
<td>Anzahl der Messungen</td>
</tr>
<tr>
<td>NIR</td>
<td>Nahinfrarot</td>
</tr>
<tr>
<td>N-OPA</td>
<td>N-Ortho-Phtaldialdehyd</td>
</tr>
<tr>
<td>PCR</td>
<td>Hauptkomponentenregression (Principal Component Regression)</td>
</tr>
<tr>
<td>PLS</td>
<td>Methode der kleinsten Fehlerquadrade (Partial Least Squares)</td>
</tr>
<tr>
<td>QbA</td>
<td>Qualitätswein bestimmter Anbaugebiete</td>
</tr>
<tr>
<td>R²</td>
<td>Bestimmtheitsmaß</td>
</tr>
<tr>
<td>Ref</td>
<td>Referenz</td>
</tr>
<tr>
<td>rel. Dichte</td>
<td>relative Dichte</td>
</tr>
<tr>
<td>------------</td>
<td>----------------</td>
</tr>
<tr>
<td>RMSEP</td>
<td>Standardfehler der Vorhersage (Root Mean Square Error of Prediction)</td>
</tr>
<tr>
<td>SE</td>
<td>Standardfehler der Kalibrierung (FOSS)</td>
</tr>
<tr>
<td>SEC</td>
<td>Standardfehler der Kalibrierung</td>
</tr>
<tr>
<td>SEV</td>
<td>Standardfehler der Validierung (FOSS)</td>
</tr>
<tr>
<td>slope</td>
<td>engl.: Steigung</td>
</tr>
<tr>
<td>Vol%</td>
<td>Volumen %</td>
</tr>
</tbody>
</table>
Tabellenverzeichnis

Tab. 1: Messbereiche der Reifeparameter 2004 ... 25
Tab. 2: Messbereiche der Gesundheitsparamter 2004 .. 26
Tab. 3: Neue mögliche Parameter .. 31
Tab. 4: Messbereiche der verschiedenen Datensätze ... 35
Tab. 5: Kalibrierung °Oechsle .. 35
Tab. 6: Vergleich der Validierungsergebnisse der °Oechsle bei unterschiedlicher
 Faktorenauswahl sowie unterschiedlich verteilten Datensätzen 36
Tab. 7: Vergleich der Validierungen Gesamtsäure von versch. Kalibrierungen 37
Tab. 8: Vergleich der Validierungsergebnisse der Gesamtsäure bei unterschiedlicher
 Faktorenauswahl sowie unterschiedlich verteilten Datensätzen 38
Tab. 9: Standardadditionen in Traubensaft .. 48
ABBILDUNGSVERZEICHNIS

Abb. 1: Elektromagnetisches Spektrum ... 6
Abb. 2: Schwingungsformen im Wassermolekül .. 7
Abb. 3: MIR-Messung in Transmission .. 8
Abb. 4: Winescan FT 120 ... 22
Abb. 5: Fließschema FT 120 ... 23
Abb. 6: Messergebnisse pH-Wert 2004 ... 25
Abb. 7: Validierung von Glycerin (g/L) in der Kalibrierung GrapeScanG2004 27
Abb. 8: Validierung von Ethanol (g/L) in der Kalibrierung GrapeScanG2004 28
Abb. 9: Neue Kalibrierung von Ethanol mit den Werten von 2004 29
Abb. 10: Validierung von Gluconsäure in der Kalibrierung GrapeScanG2004 30
Abb. 11: Neue Kalibrierung von Gluconsäure mit den Werten von 2004 31
Abb. 12: Faktorenauswahl bei einer Kalibrierung am Faktor mit kleinstem CVE 33
Abb. 13: Faktorenauswahl bei einer Kalibrierung am Faktor mit der größten Differenz zum vorhergehenden Faktor ... 34
Abb. 14: Zuckergehalte während der Reife ... 39
Abb. 15: Säureabbau während der Reife ... 40
Abb. 16: Gärverlauf eines Mostes mit verschiedenen Hefen im Labormaßstab 41
Abb. 17: Addition von Gluconsäure in wässriger Lösung 45
Abb. 18: Addition von Gluconsäure in Traubensaft ... 46
Abb. 19: Slope/Intercept-Korrektur von GrapeScanG2004 bei Gluconsäure 47
1. Einleitung

Um zusätzliche Inhaltsstoffe mittels herkömmlichen analytischen Methoden zu bestimmen, ist jedoch ein großer personeller, finanzieller und auch zeitlicher Aufwand nötig. Oftmals ist gerade die Zeit der limitierende Faktor, da in Genossenschaften während der Hauptlesezeit viele Partien in sehr kurzer Zeit angeliefert werden und diese rasch für die Weiterverarbeitung freigegeben werden müssen.

Um nun eine umfangreichere Beurteilung vornehmen zu können, muss eine schnelle, objektive und finanziell tragbare Methode angewandt werden, welche ohne große zusätzliche personelle Belastung durchgeführt werden kann. Außerdem sollte die Methode nach kurzer Einweisung durch Fachpersonal von Laien durchgeführt und die Ergebnisse ohne Probleme von den Kellermeistern interpretiert werden können.

Ziel des Projektes ist die objektive, umfangreiche und schnelle Analyse und Beurteilung der Traubenmostqualität. Hierfür wird ein Fourier-Transform-Infrarot-Spektrometer

Mit diesem neuen System sollte nun eine differenzierte Bewertung der Traubenqualität entwickelt werden, um eine objektive und qualitätsorientierte Differenzierung bei der Traubenannahme durchführen zu können. Auf diesem Weg könnte die Weinqualität in Deutschland gesteigert werden. Zusätzlich könnte auf Grund der vielen verschiedenen bestimmten Inhaltsstoffe ein differenzierteres und qualitätsorientiertes Auszahlungssystem erstellt werden, welches den Winzern einen finanziellen Anreiz geben könnte, verstärkt die geforderte Qualität anstatt Quantität zu produzieren.

Zusätzlich liefert das System zum einen dem Winzer ein objektives System, den optimalen Leszeitpunkt zu finden, an welchem das Lesegut die ideale Reife erreicht hat und ebenfalls gesund ist. Zum anderen erhält der Kellermeister Informationen über den Reife- und Gesundheitszustand, um eventuell benötigte oenologische Maßnahmen sofort in die Wege leiten zu können.
2. Literaturübersicht

In der Chemie und Pharmazie wird die IR-Spektroskopie schon seit Jahrzehnten zur qualitativen Analyse von chemischen Strukturen verwendet (Gottwald und Wachter 1997).

3. Theoretischen Grundlagen

3.1. IR-Spektroskopie

Im infraroten Wellenlängenbereich (800 - 500.000 nm) wird aus spektroskopischer Sicht zwischen dem nahen Infrarot (NIR 800 - 2.500 nm), dem mittleren Infrarot (MIR 2.500 - 50.000 nm) und dem fernen Infrarot (FIR 50.000 - 500.000 nm) unterschieden, weil unterschiedliche Phänomene die Absorption dieser Strahlung verursachen. Im fernen Infrarot absorbieren Molekülrotationen. Im MIR werden die Schwingungen der Molekülbindungen und im NIR sind nur noch Obertöne beziehungsweise Kombinationsschwingungen des MIR detektiert (Hesse, Maier, Zeeh, 1995).

Bei der Fourier-Transform-Mittelinfraot-Spektrometrie (FT-MIR) handelt es sich um die Messung der Absorption einer Probe im mittleren Infrarotbereich.

Wird IR-Strahlung von der Materie absorbiert, so verändern sich Lage, Bindungswinkel und die Bindungslänge zwischen Atomen oder Atomgruppen in einem Molekül. Es existieren verschiedene Arten von Bindungsschwingungen: Deformationsschwingungen (Abb. 2, oben) sowie symmetrische (Abb. 2, Nr. 2) und asymmetrische (Abb. 2, Nr.3) Valenzschwingungen. Deformationsschwingungen sind Beugeschwingungen, bei denen der Bindungswinkel des Moleküls verändert wird. Valenzschwingungen sind Streckschwingungen, bei denen nur die Bindungslänge nicht aber der Bindungswinkel variiert. Verändern sich die Bindungslängen symmetrisch, handelt es sich um eine symmetrische Valenzschwingung, im asymmetrischen Fall um die asymmetrische Valenzschwingung.

IR-aktiv sind Schwingungen, bei denen sich der Massenschwerpunkt des Moleküls verlagert und dadurch eine Änderung des Dipolmomentes induziert wird. Die absorbierte Strahlung wird über den genannten Wellenlängenbereich mittels Durchflussküvetten in Transmission aufgenommen. Der schematische Verlauf der Mittelinfrarotstrahlung ist für die Transmissionsmessung in Abb. 3 dargestellt (Gottwald und Wachter, 1997).

Eine quantitative Bestimmung aus den Infrarot-Spektren ist möglich, da nach dem Lambert-Beerschen Gesetz (Formel 1) ein Absorptions-Konzentrationszusammenhang besteht:
Formel 1: Lambert-Beersches Gesetz

\[\log \frac{I_o}{I} = \log \frac{1}{T} = A(\lambda) = \varepsilon(\lambda) * c * d \]

I_o: einfallende Lichtintensität
I: aus Zelle ausfallende Lichtintensität
T: Transmission (Durchlässigkeit)
A(\lambda): Absorption (wellenlängenabhängig)
\varepsilon(\lambda): Extinktionskoeffizient (wellenlängenabhängig)
c: Konzentration des jeweiligen Stoffes
d: Schichtdicke der Messzelle

3.2. Multivariate Datenanalyse

3.2.1 Filterselektion

Spektrale Daten enthalten eine Fülle von Informationen. Um die relevanten Informationen aus den Daten herauszufiltern, wird eine Filterselektion durchgeführt. Hierbei werden die Spektralbereiche gewählt, die die höchsten Korrelationen zu den Referenzwerten aufweisen.

3.2.2.1 Filterselektion nach Foss:

Die Filterselektion nach Foss wird mit dem in der Gerätesoftware enthaltenen Algorithmus durchgeführt. Dabei werden die zwischen den Referenzdaten

3.2.2 Partial Least Square-Regression (PLS)

Formel 2: PLS-Regressionsgleichung

\[
\text{Konzentration} = k_1 \cdot A(\lambda_1) + k_2 \cdot A(\lambda_2) + \ldots \cdot k_n \cdot A(\lambda_n) + B
\]

K: Regressionskoeffizient der entsprechenden Wellenlänge
A(λₐ): Absorption der Wellenlänge
B: Konstante

Hierbei enthalten die ersten Hauptkomponenten die relevantesten Unterschiede zwischen den Referenzdaten und den Spektren. Hierdurch wird die Beurteilung des Kalibriermodels vereinfacht und das Signal-Rausch-Verhältnis der Informationen verbessert.

3.2.3. Kalibrierung

Bei der Kalibrierung wird die größtmögliche Anpassung an die Regressionsgerade ermittelt. Hierbei werden neben dem Messbereich des Datensatzes die Anzahl der Filter (Spektrenpunkte) und die Hauptkomponenten angegeben, mit welchen die Berechnung durchgeführt wird.

Die Komplexität des mathematischen Kalibriermodells kann über die Hauptkomponenten eingeschätzt werden. Ihre Anzahl ist immer niedriger oder gleich der Anzahl an Filtern, die in das Modell einfließen, da es ansonsten überbestimmt wäre. Mit jeder Hauptkomponente bildet sich über ein Gleichungssystem eine Anpassung der

Um eine stabile Kalibrierung zu erreichen, ist es nötig eine Vielzahl an Mostproben aus verschiedenen Jahrgängen, Anbaugebieten, Rebsorten und Qualitätsstufen zu verwenden. Durch die verschiedenen Einflussfaktoren kann ein möglichst großer Messbereich abgedeckt werden.

Um eine quantitative Aussage über die verschiedenen Parameter machen zu können, sollten die Gehalte über 1 g/L liegen. Zwischen 0,1 g/L und 1 g/L kann man nur halbquantitative Aussagen treffen und eine grobe Einschätzung des Gehaltes vornehmen. Unter 0,1 g/L ist die Konzentration zu gering, um eine Aussage über den Gehalt machen zu können.

Bei der Kalibrierung werden neben der Probenanzahl, dem Messbereich und Median folgende Kennzahlen angegeben:

Cross Validation Error (CVE):
Er gibt Auskunft darüber, wie gut die Kalibrierung mit den vorhandenen Proben funktioniert. Hierbei handelt es sich um den Standardfehler der Vorhersage, auch RMSEP (eng. Root Mean Square Error of Prediction) genannt. Hierbei gilt, je kleiner der Fehler der Vorhersage, desto größer ist die Übereinstimmung zwischen dem Analysenwert des FTIR und dem Analysenwert der Referenzmethode. Er wird nach folgender Formel berechnet:

Formel 3: Berechnung des CVE
\[CVE = \sqrt{\frac{\sum_{i=1}^{n} (Y_{\text{Ref}_i} - Y_{\text{IR}_i})^2}{n-1}} \]

IR_i: Vorhersage IR
Ref_i: Referenzgehalt
n: Anzahl der Messungen
i: i-te Messung

Filter:
Die Filter geben Aufschluss über die Spektrenpunkte, bei denen ein Zusammenhang zwischen den Analysenwerten und den entsprechenden Spektralbereichen besteht.

Faktoren:
Sie geben an, wie viele Hauptkomponenten für die Kalibrierung verwendet werden.

3.2.4 Validierung

Um systematische Fehler einer Kalibrierung, die bei der Validierung hervortreten, zu entfernen, kann eine Slope/Intercept-Korrektur durchgeführt werden. Hierunter versteht man eine Verrechnung mit einer einfachen linearen Funktion \(y = ax + b \). Hierbei handelt
es sich um eine Geradengleichung, wobei a die Steigung und b der Achsenabschnitt der Geraden bedeutet. Eine Interseptkorrektur kann den Achsenabschnitt der Gerade nach links oder rechts verschieben, ohne dass die Steigung (Slope) verändert wird. Hierdurch können systematisch zu hohe oder zu niedrige Werte korrigiert und dem vorhandenen System angepasst werden.

Bestimmtheitsmaß R^2:

Das Bestimmtheitsmaß gibt an, inwieweit die Referenzwerte mit den FTIR-Werten übereinstimmen. Hierfür werden die ermittelten FTIR-Werte den Referenzwerten in einem xy-Diagramm gegenübergestellt. Legt man eine Regressionsgerade durch dieses Diagramm, sollte diese im Idealfall die Steigung 1 haben und die Achsen im Nullpunkt schneiden ($y = 1x + 0$). In diesem Idealfall würden die vorhergesagten Referenzwerte y exakt den Messwerten x der Referenz entsprechen, das Bestimmtheitsmaß R^2 wäre 1. Je mehr sich nun das Bestimmtheitsmaß dem Wert 1 nähert, desto geringer ist die Varianz der Messwerte und die Idealgerade. Das heißt, die berechneten Werte stimmen also umso besser mit den Referenzwerten überein.

Formel 4: Bestimmtheitsmaß R^2

$R^2 = 1 - \frac{\sum_{i=1}^{n} (Y_{\text{Ref},i} - Y_{\text{IR},i})^2}{\sum_{i=1}^{n} (Y_{\text{Ref},i} - \bar{Y})^2}$

IR$_i$:	Vorhersage IR
Ref$_i$:	Referenzgehalt
n:	Anzahl der Messungen
i:	i-te Messung
\bar{Y}:	Mittelwert
Standardfehler der Slope/Intercept-korrigierten Kalibrierung (SEC) nach Foss:

Formel 5: Standardfehler der Slope/Intercept-korrigierten Kalibrierung

$$SEC = \sqrt{\frac{\sum_{i=1}^{n} (Y_{Re_{fi}} - Y_{IRi})^2}{n - (A - 1)}}$$

IRi: Vorhersage IR
Refi: Referenzgehalt
n: Anzahl der Messungen
i: i-te Messung
A: Anzahl der Faktoren

Standardfehler der vorhandenen Kalibrierung (SE) nach Foss:

Formel 6: Standardfehler der vorhandenen Kalibrierung

$$SE = \sqrt{\frac{\sum_{i=1}^{n} (Y_{Re_{fi}} - Y_{IRi})^2}{n}}$$
IRi: Vorhersage IR
Refi: Referenzgehalt
n: Anzahl der Messungen
i: i-te Messung

Mean Bias:
Der Bias (Formel 7) beschreibt die gemittelte Differenz von vorhergesagtem und gemessenem Referenzwert Y. Im Idealfall liegt er bei 0 Treten jedoch größere Abweichungen von 0 auf, so handelt es sich um eine systematische Verschiebung des Datensatzes.

Formel 7: Bias

$$\text{Bias} = \frac{\sum_{i=1}^{n} (Y_{\text{Ref},i} - Y_{\text{IR},i})}{n}$$

IRi: Vorhersage IR
Refi: Referenzgehalt
n: Anzahl der Messungen
i: i-te Messung
4. Material und Methoden

4.1 Untersuchungsmaterial

4.1.1 Most

Die Moste verteilen sich auf die verschiedenen Jahre wie folgt:

- 1999: 108 Proben
- 2000: 315 Proben
- 2001: 362 Proben
- 2002: 678 Proben
- 2003: 819 Proben
- 2004: 738 Proben

Auf die verschiedenen Anbaugebiete verteilen sich die Moste folgend:

- Ahr: 34 Proben
- Baden: 35 Proben
- Hessische Bergstraße: 25 Proben
- Luxemburg: 41 Proben
- Mosel: 82 Proben
- Nahe: 25 Proben
- Pfalz: 55 Proben
- Rheingau: 2267 Proben
- Rheinhessen: 140 Proben
- Württemberg: 2 Proben

Es sind 986 rote Moste und 2295 weiße Moste, die sich auf folgende Hauptrebsorten sowie viele verschiedene kleine Probenmengen an verschiedenen Rebsorten, die nicht alle einzeln aufgeführt werden, verteilen:

- Weißer Riesling: 1252 Proben
- Blauer Spätburgunder: 638 Proben
- Blauer Frühburgunder: 113 Proben
- Versch. Geisenheimer Klone: 87 Proben
- Müller-Thurgau: 59 Proben
- Weißer Burgunder: 51 Proben
- Silvaner: 38 Proben
- Blauer Portugieser: 35 Proben
- Grauer Burgunder: 30 Proben
- Rondo: 24 Proben
- Rotberger: 24 Proben
- Traminer: 22 Proben
- Chardonnay: 18 Proben
- Regent: 18 Proben
- St. Laurent: 14 Proben
- Dornfelder 13 Proben
- Merlot: 12 Proben
- Saphira: 11 Proben
- Cabernet franc: 10 Proben
4.1.1. Standardlösungen

Most:
Hier wurden Modelllösungen erstellt, welche verschiedene Konzentrationen an Essigsäure im Bereich von 0,1g/L bis 10g/l enthalten.

Wasser:
Hier wurden Modelllösungen erstellt, die Essigsäure, Ethanol, Milchsäure, Glycerin und Gluconsäure einzeln enthielten.
Die Konzentrationen erstreckten sich hierbei über einen Bereich 0,1g/L bis 10g/L.

Traubensaft:
Hier wurden Modelllösungen erstellt, die Essigsäure, Ethanol, Milchsäure, Glycerin und Gluconsäure sowohl einzeln als auch gemeinsam enthielten.
Bei den Einzeladditionen lagen die Einwagen zwischen 0,01g/l und 10g/L; die der Gesamtaddition zwischen 0,01 g/L und 2 g/L.
4.2 Methoden

4.2.1 Referenzmethoden

Folgende Analysenparameter wurden untersucht:

Rel. Dichte (20/20): Biegeschwinger (DMA 48, *Paar*)

Extrakt: über die rel. Dichte ermittelten Wert, Formel nach Tabarié
(Extrakt-Tafel, (Reichard, 1972))

Brix: Refraktometer bei 20°C

Leitfähigkeit: konduktometrisch bei 20°C

Glycerin: enzymatisch per Analysenautomat

Gluconsäure: enzymatisch per Analysenautomat

Gesamtphenole: photometrisch nach Folin-Ciocalteu (ber. als wasserfreies
Catechin, Standard: D(+) -Catechin-Hydrat (Fluka 22110)
FAG-SOP, gemäß Ritter 1994))

Gesamtphenole: nach Folin-Ciocalteu mittels Easylab (Fa. Erbslöh)

D-Fructose: enzymatisch per Analysenautomat

D-Glucose: enzymatisch per Analysenautomat

Zucker vor Inversion: reduzierende Zucker nach Luff-Schoorl

Gesamtsäure (pH7,0, WS): potentiometrische Titration (Titrator, *Schott*) (bis pH 7,0
ber. als Weinsäure)

pH-Wert: potentiometrisch bei 20°C (Glas-Kalomel-Elektrode)

Flüchtige Säure: alkalimetrisch nach Wasserdampfdestillation (Vapodest,
Gerhardt), ber. als Essigsäure

Weinsäure: HPLC (UV-Detektion bei 230 nm, Merck,
Säule: Kombination von RP-18 (Luna 5µ C18,
250*4,6nm) und Anionenaustauscher (Rezex Fast Fruit,
8%H, 100*7,8mm); Fließmittel: 2%ige (W7V) Lösung
85%iger Phosphorsäure in bidest. Wasser,
Säulentemperatur 20º (Grosheny et al, 1995))

D-/L- Äpfnelsäure: HPLC (siehe Weinsäure)

L- Äpfnelsäure (enzymatisch): enzymatisch mittels Analysenautomat

L- Milchsäure (enzymatisch): enzymatisch mittels Analysenautomat
Essigsäure (enzymatisch): enzymatisch mittels Analysenautomat
Ethanol (enzymatisch): enzymatisch mittels Analysenautomat
Kalium: AAS
Calcium: AAS
Magnesium: AAS
Hefeverwertbarer Stickstoff: photometrisch nach N-OPA mittels Analysenautomat
(SOP-FAG gemäß Dukes und Butzke, 1998)
Hefeverwertbarer Stickstoff: mittels Easylab (Fa. Erbslöh)
Ammonium: enzymatisch von Hand (Boehringer)
Ammonium: mittels Easylab (Fa. Erbslöh)
Farbe: photometrisch, Extinktion bei 420nm, 520nm und 620nm
Phenole: photometrisch, Extinktion bei 280nm, 320nm und 420nm

FAG-SOP: Standardarbeitsanweisung der Forschungsanstalt Geisenheim, Weinanalytik und Getränkeforschung

4.2.2 IR-Spektrometrie

Die Messungen wurden mit dem IR-Spektrometer „Winescan FT-120“ der Firma Foss durchgeführt, welches speziell für die Analyse von Flüssigkeiten ausgelegt ist (Abb. 4)

![Winescan FT 120](image)

Abb. 5: Fließschema FT 120

Die Elektronik, die Strahlungsquelle und das Interferometer befinden sich in einem vom Nassraum völlig abgetrennten Bereich des Gerätes.

Der Winescan FT 120 wurde ursprünglich für die Weinanalytik herangezogen. Um nun ebenfalls Moste untersuchen zu können, musste das Gerät mit einer speziellen Kalibrierung für Moste ausgestattet werden, da eine Kalibrierung immer nur für eine bestimmte Probenmatrix verwendet werden kann.

Die ursprüngliche Kalibrierung GrapeScan, welche für die Mostanalytik erstellt wurde, enthält jedoch nur Mostproben aus Frankreich und Spanien. Da die weinbaulichen Verhältnisse in Deutschland jedoch sehr unterschiedlich von den Verhältnissen in diesen beiden Ländern sind, waren die erhaltenen Ergebnisse noch mit einem relativ großen Fehler behaftet. Um nun die vorhandene Kalibrierung zu verbessern bzw. zu ersetzen und den deutschen weinbaulichen Verhältnissen anzupassen, müssen die Proben sowohl mittels FTIR als auch mit den klassischen analytischen Methoden analysiert und miteinander verrechnet werden.

Eine quantitative Aussage über die im Most vorhandenen Substanzen kann man ab einer Konzentration von etwa 1g/L machen, zwischen 0,1g/L und 1g/L bekommt man eine grobe Einschätzung des jeweiligen Gehaltes.
5. Ergebnisse

5.1 Beurteilung der Traubenreife

So geben auch die Dichte, der pH-Wert, Fructose und Glucose sowie die Wein- und Äpfelsäure einen Hinweis auf die Reife des Leseguts. Das gleiche gilt für ihre Verhältnisse zueinander (Glucose/Fructose, Weinsäure/Äpfelsäure).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Probenanzahl</th>
<th>Messbereich</th>
<th>Median</th>
<th>Max Abweichung</th>
<th>Standardabweichung</th>
<th>R²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dichte</td>
<td>417</td>
<td>1,0522 - 1,1159</td>
<td>1,0887</td>
<td>0,0093</td>
<td>0,0019</td>
<td>0,9686</td>
</tr>
<tr>
<td>pH-Wert</td>
<td>396</td>
<td>2,59 - 4,17</td>
<td>3,1</td>
<td>0,29</td>
<td>0,12</td>
<td>0,8135</td>
</tr>
<tr>
<td>Brix (%)</td>
<td>393</td>
<td>12,37 - 26,93</td>
<td>20,76</td>
<td>1,43</td>
<td>0,29</td>
<td>0,9867</td>
</tr>
<tr>
<td>Glucose (g/L)</td>
<td>325</td>
<td>54,2 – 138,4</td>
<td>101,8</td>
<td>14,95</td>
<td>3,92</td>
<td>0,9275</td>
</tr>
<tr>
<td>Fructose (g/L)</td>
<td>299</td>
<td>52,5 - 141</td>
<td>108,8</td>
<td>14,94</td>
<td>6,22</td>
<td>0,8664</td>
</tr>
<tr>
<td>Gesamtsäure (g/L)</td>
<td>416</td>
<td>3,72 - 18,58</td>
<td>8,22</td>
<td>1,29</td>
<td>0,32</td>
<td>0,9795</td>
</tr>
<tr>
<td>Äpfelsäure (g/L)</td>
<td>275</td>
<td>1,22 - 10,03</td>
<td>4,37</td>
<td>1,97</td>
<td>0,72</td>
<td>0,7224</td>
</tr>
<tr>
<td>Weinsäure (g/L)</td>
<td>29</td>
<td>2,87 - 12,35</td>
<td>9,71</td>
<td>1,64</td>
<td>0,59</td>
<td>0,9610</td>
</tr>
</tbody>
</table>

Tab. 1: Messbereiche der Reifeparameter 2004

Wenn man sich die Ergebnisse des pH-Wertes ansieht, zeigt sich, dass hier die Korrelation zwischen den FTIR-Werten und den Referenzwerten mit einem $R^2 = 0,8135$ nicht sehr hoch ist. Die Abweichungen liegen jedoch über dem ganzen Messbereich im gleichen Korridor (Abb. 6).

5.2 Beurteilung des Gesundheitszustandes

Wie die Traubenreife ist der gesundheitliche (mikrobiologische) Zustand der Trauben wichtig für die Verarbeitung des Lesematerials. Zur Beurteilung der Qualität wird in den häufigsten Fällen nur eine visuelle Bonitierung durchgeführt. Es zeigt sich aber,

<table>
<thead>
<tr>
<th>Komponente</th>
<th>Probenanzahl</th>
<th>Messbereich</th>
<th>Median</th>
<th>Max Abweichung</th>
<th>Standardabweichung</th>
<th>R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Essigsäure (g/L)</td>
<td>167</td>
<td>0,00 - 3,29</td>
<td>0,73</td>
<td>1,29</td>
<td>0,27</td>
<td>0,8129</td>
</tr>
<tr>
<td>Glu/Fru</td>
<td>270</td>
<td>0,73 - 1,09</td>
<td>0,95</td>
<td>0,09</td>
<td>0,04</td>
<td>0,5806</td>
</tr>
<tr>
<td>Glycerin (g/L)</td>
<td>341</td>
<td>0,00 – 18,72</td>
<td>0,70</td>
<td>2,84</td>
<td>0,92</td>
<td>0,8795</td>
</tr>
<tr>
<td>Gluconsäure (g/L)</td>
<td>360</td>
<td>0,00 - 3,14</td>
<td>0,29</td>
<td>3,81</td>
<td>1,02</td>
<td>-</td>
</tr>
<tr>
<td>Ethanol (g/L)</td>
<td>131</td>
<td>0,00 – 18,77</td>
<td>1,77</td>
<td>5,80</td>
<td>2,50</td>
<td>-</td>
</tr>
</tbody>
</table>

Tab. 2: Messbereiche der Gesundheitsparameter 2004

Diese Proben wurden sowohl mittels FTIR als auch mit den klassischen Referenzverfahren untersucht. So erhielt man neben den gesunden Mostproben auch „kranke“ Mostproben, die in einer regulären Mostmatrix Stoffe enthalten, welche durch mikrobiologische Einflüsse gebildet werden. Mit diesen Proben kann nur sowohl die bereits vorhandene Kalibrierung validiert werden, um zu sehen, wie gut erhöhte Werte vorhersagbar sind. Außerdem können diese Werte in eine neue, verbesserte Mostkalibrierung einfließen, um bei dieser den Messbereich dieser Substanzen zu vergrößern und die Vorhersage zu verbessern.
Um nun zu überprüfen, wie gut die Vorhersagekraft der momentan gültigen Kalibrierung bei erhöhten Werten der einzelnen Parameter ist, werden im Folgenden von den addierten Proben die Werte der FTIR-Messung den Werten aus den Referenzbestimmungen gegenübergestellt.

In der Abb. 7 erkennt man, dass die Bestimmung von Glycerin mit größeren Fehlern behaftet ist. Die maximale Abweichung beträgt hier ± 3 g/L, die Standardabweichung $\pm 1,3$ g/L.

![Abb. 7: Validierung von Glycerin (g/L) in der Kalibrierung GrapeScanG2004](image)

Man kann jedoch aufgrund der Ergebnisse Partien mit erhöhten Glyceringehalten aussortieren und gesondert behandeln. Bei Glyceringehalten bis ca. 3 g/L kann man aufgrund der FTIR-Analyse gegebenenfalls eine zusätzliche enzymatische Untersuchung durchführen, um den Gehalt zu überprüfen.

Ähnliches wie für Glycerin gilt für die flüchtige Säure. Hier lassen sich Vorhersagen in einem Bereich von 0 g/L bis 3,5 g/L mit einer maximalen Abweichung von $\pm 1,5$ g/L und einer Standardabweichung von $\pm 0,3$ g/L treffen. Man erkennt somit sofort, ob eine Partie bereits faules Lesegut mit erhöhten Essigsäuregehalten enthält oder nicht.

Für die Ethanolkalibrierung wurde den Mosten Ethanol bis zu ca. 22 g/L addiert. Bei der Validierung der momentan gültigen Kalibrierung GrapeScanG 2004 (Abb. 8) kann
man jedoch erst oberhalb 8 g/L eine gültige Aussage treffen. Darunter ist die Schwankung so groß, dass es unmöglich ist, den Gehalt zuverlässig zu bestimmen.

Abbildung 8: Validierung von Ethanol (g/L) in der Kalibrierung GrapeScanG2004

Daher wurde mit den vorhandenen Werten eine neue Kalibrierung erstellt. Hier zeigt sich (Abb. 9), dass diese, zumindest für diesen Datensatz, wesentlich besser funktioniert als die vorhandene und eine Aussage über das enthaltene Ethanol möglich ist. Abbildung 9 zeigt die Abweichung der Referenzwerte zu den jeweils berechneten Werten des FTIR. In Abb. 9 sind einige der Werte negativ, da es sich bei diesen um aus den Spektren berechnete Werte handelt.
Abb. 10: Validierung von Gluconsäure in der Kalibrierung GrapeScanG2004

Aber auch hier zeigt sich bei einer neuen Kalibrierung mit den entsprechenden Werten in Abb. 11, ähnlich wie bei Ethanol, dass nun auch bei erhöhten Gluconsäuregehalten eine Aussage möglich ist. Auch hier ergeben sich aufgrund der Berechnung aus den Spektren analog zum Ethanol negative Gehalte an Gluconsäure bei den FTIR-Werten.
5.3 Erweiterung der Kalibrierung um weitere wichtige Parameter

Neben den Reife- und Qualitätsparametern gibt es jedoch noch eine große Anzahl an Parametern, die bei der Verarbeitung und Vergärung des Lesguts wichtig sind (Tab. 3).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Anzahl</th>
<th>Messbereich</th>
<th>Median</th>
<th>Standard-Abweichung</th>
<th>max. Abweichung</th>
<th>R²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kalium</td>
<td>148</td>
<td>923 - 2085</td>
<td>1275</td>
<td>225,5</td>
<td>490</td>
<td>0,6986</td>
</tr>
<tr>
<td>Calcium</td>
<td>242</td>
<td>7 - 140</td>
<td>89</td>
<td>66,44</td>
<td>342</td>
<td>-</td>
</tr>
<tr>
<td>Magnesium</td>
<td>201</td>
<td>50 - 193</td>
<td>78</td>
<td>24,99</td>
<td>67</td>
<td>-</td>
</tr>
<tr>
<td>Extrakt</td>
<td>236</td>
<td>206,6 - 351,6</td>
<td>244,3</td>
<td>2,56</td>
<td>6,85</td>
<td>0,9900</td>
</tr>
<tr>
<td>Ammonium</td>
<td>105</td>
<td>36 - 491</td>
<td>141</td>
<td>57,1</td>
<td>114</td>
<td>0,5439</td>
</tr>
<tr>
<td>Leitfähigkeit</td>
<td>250</td>
<td>1422 - 3140</td>
<td>2010</td>
<td>123,3</td>
<td>352</td>
<td>0,8743</td>
</tr>
<tr>
<td>N-OPA</td>
<td>180</td>
<td>54 - 299</td>
<td>121</td>
<td>39,49</td>
<td>76</td>
<td>0,4388</td>
</tr>
</tbody>
</table>

Tab. 3: Neue mögliche Parameter

Wichtig für den Kellermeister ist es, zu wissen, wie gut die Trauben mit hefeverwertbarem Stickstoff und Ammonium versorgt sind, um eine eventuell

5.4 Vergleich verschiedener Faktoren

Da die ursprüngliche Mostkalibrierung nicht auf Daten von deutschen Mosten, sondern auf Daten aus Frankreich und Spanien basiert und die weinbaulichen Bedingungen nicht ohne weiteres von einem Anbaugebiet auf ein anderes übertragen werden können, musste diese Kalibrierung mit Daten aus den deutschen Anbaugebieten neu kalibriert werden. Zusätzlich zu der Verbesserung der bereits bestimmbaren Parameter wurden weitere Parameter mit den klassischen Analysenverfahren analysiert und diese dann in eine neue Kalibrierung aufgenommen.

Wird eine Kalibrierung durchgeführt, wird in der Regel der Faktor verwendet, bei dem der CVE am geringsten ist (Abb. 12).

![Abb. 12: Faktorenauswahl bei einer Kalibrierung am Faktor mit kleinstem CVE](image)

Es wird davon ausgegangen, dass bei dieser Faktorenauswahl die Kalibrierung am stabilsten ist.

Im Vergleich dazu wurde nun eine Kalibrierung erstellt, bei der die gleichen Filter und der gleiche Datensatz verwendet wurden, jedoch wurde der Faktor verwendet, bei dem die größte Differenz im CVE zum Faktor davor auftritt (Abb. 13).
Hierfür wurden 4 Datensätze mit jeweils ca. 200 bis 300 Mosten aus verschiedenen Jahren gebildet, Datensätze A (2003) und Datensätze B (2004). Für jeden Jahrgang wurde ein Datensatz gebildet, der aus Mosten besteht, die einen „normalen“ Reifezustand haben (M03_1 und M04_1). Die gleichen Datensätze wurden dann um zusätzliche Proben erweitert. Hierfür wurden Moste verwendet, welche entweder aus sehr unreifen Trauben oder aus überreifen Trauben hergestellt wurden (M03_2 und M04_2). Für die Filterauswahl wurde die aktuelle Kalibrierung GrapeScanG2004 verwendet. Mit beiden Datensätzen wurde bei voller Filterauswahl jeweils eine Kalibrierung durchgeführt, bei der der Faktor mit dem kleinsten CVE (Minimum) ausgewählt wurde und eine Kalibrierung mit dem Faktor, welcher die größten Differenz des CVE zum vorhergehenden Faktor (Maximum) auswies. Die Kalibrierungen wurden jeweils mit beiden Datensätzen des anderen Jahrgangs validiert und miteinander verglichen. Die Probensätze M03_2 und M04_2 wurden ausgewählt, um zu überprüfen, wie gut sich Werte vorhersagen lassen und welche außerhalb der Kalibrierung liegen.

Im Folgenden wird dies an den Parametern °Oechsle und Gesamtsäure durchgeführt, da hier eine bereits eine gute Vorhersage möglich ist.

Tabelle 4 gibt einen Überblick über die Messbereiche, Mittelwerte und Mediane der einzelnen Datensätze.
Datensatz Parameter Min Max Median Mittelwert

<table>
<thead>
<tr>
<th>Datensatz</th>
<th>Parameter</th>
<th>Min</th>
<th>Max</th>
<th>Median</th>
<th>Mittelwert</th>
</tr>
</thead>
<tbody>
<tr>
<td>M03_1</td>
<td>°Oechsle</td>
<td>73</td>
<td>116</td>
<td>91</td>
<td>91,7</td>
</tr>
<tr>
<td></td>
<td>Gesamtsäure</td>
<td>2,16</td>
<td>9,93</td>
<td>6,28</td>
<td>6,06</td>
</tr>
<tr>
<td>M03_2</td>
<td>°Oechsle</td>
<td>52</td>
<td>248</td>
<td>92</td>
<td>92,76</td>
</tr>
<tr>
<td></td>
<td>Gesamtsäure</td>
<td>2,16</td>
<td>11,57</td>
<td>6,32</td>
<td>6,23</td>
</tr>
<tr>
<td>M04_1</td>
<td>°Oechsle</td>
<td>69,3</td>
<td>108,2</td>
<td>89,25</td>
<td>89,56</td>
</tr>
<tr>
<td></td>
<td>Gesamtsäure</td>
<td>3,72</td>
<td>14,85</td>
<td>8,07</td>
<td>8,17</td>
</tr>
<tr>
<td>M04_2</td>
<td>°Oechsle</td>
<td>52,2</td>
<td>115,9</td>
<td>87,8</td>
<td>86,8</td>
</tr>
<tr>
<td></td>
<td>Gesamtsäure</td>
<td>3,72</td>
<td>18,58</td>
<td>8,16</td>
<td>8,64</td>
</tr>
</tbody>
</table>

Tab. 4: Messbereiche der verschiedenen Datensätze

5.4.1 °Oechsle

Stellt man nun die Kalibrierungen gegenüber, zeigt sich, dass die Auswahl des Faktors mit dem geringsten CVE deutlich bessere Werte liefert als die zweite Variante (Tab. 5). Minimum bedeutet, dass hier der Filter mit dem niedrigsten CVE als Faktor ausgewählt wurde; Maximum, der Filter, der den größten Unterschied im CVE zum vorhergehenden Filter hat.

<table>
<thead>
<tr>
<th>Minimum</th>
<th>Datensatz</th>
<th>Filter</th>
<th>Faktoren</th>
<th>CVE</th>
</tr>
</thead>
<tbody>
<tr>
<td>normal</td>
<td>A (M03_1)</td>
<td>13</td>
<td>4</td>
<td>0,5977</td>
</tr>
<tr>
<td></td>
<td>B (M04_1)</td>
<td>13</td>
<td>8</td>
<td>0,7479</td>
</tr>
<tr>
<td>extrem</td>
<td>A (M03_2)</td>
<td>13</td>
<td>7</td>
<td>0,5626</td>
</tr>
<tr>
<td></td>
<td>B (M04_2)</td>
<td>13</td>
<td>6</td>
<td>0,7829</td>
</tr>
<tr>
<td>Maximum</td>
<td>normal</td>
<td>A (M03_1)</td>
<td>13</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>B (M04_1)</td>
<td>13</td>
<td>2</td>
<td>0,8550</td>
</tr>
<tr>
<td></td>
<td>A (M03_2)</td>
<td>13</td>
<td>2</td>
<td>0,7542</td>
</tr>
<tr>
<td></td>
<td>B (M04_2)</td>
<td>13</td>
<td>2</td>
<td>0,8416</td>
</tr>
</tbody>
</table>

Tab. 5: Kalibrierung °Oechsle

Um nun jedoch zu überprüfen, welche Kalibrierung die bessere ist, müssen die Kalibrierungen mit den beiden unabhängigen Datensätzen der anderen Jahrgangs validiert und diese Ergebnisse miteinander verglichen werden (Tab. 6). Hier werden die Fehler der Kalibrierung vor und nach einer Slope/Intercept-Korrektur angegeben.

<table>
<thead>
<tr>
<th>Kalibrierung</th>
<th>Validierung</th>
<th>Fehler vor Slope/Intersept-Korrektur</th>
<th>Fehler nach Slope/Intersept-Korrektur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Datensatz</td>
<td>Datensatz</td>
<td>SE</td>
<td>Mean Bias</td>
</tr>
<tr>
<td>Minimum</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A (M03_1)</td>
<td>M04_1</td>
<td>3,0175</td>
<td>2,1613</td>
</tr>
<tr>
<td></td>
<td>M04_2</td>
<td>2,0677</td>
<td>1,5933</td>
</tr>
<tr>
<td>B (M04_1)</td>
<td>M03_1</td>
<td>1,4022</td>
<td>-1,0171</td>
</tr>
<tr>
<td></td>
<td>M03_2</td>
<td>1,4547</td>
<td>-0,9634</td>
</tr>
<tr>
<td>A (M03_2)</td>
<td>M04_1</td>
<td>2,107</td>
<td>1,5652</td>
</tr>
<tr>
<td></td>
<td>M04_2</td>
<td>1,9735</td>
<td>1,3771</td>
</tr>
<tr>
<td>B (M04_2)</td>
<td>M03_1</td>
<td>1,3364</td>
<td>-0,9526</td>
</tr>
<tr>
<td></td>
<td>M03_2</td>
<td>1,356</td>
<td>-0,875</td>
</tr>
<tr>
<td>Maximum</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A (M03_1)</td>
<td>M04_1</td>
<td>0,5491</td>
<td>-0,2613</td>
</tr>
<tr>
<td></td>
<td>M04_2</td>
<td>0,5801</td>
<td>-0,319</td>
</tr>
<tr>
<td>B (M04_1)</td>
<td>M03_1</td>
<td>1,4238</td>
<td>-0,9706</td>
</tr>
<tr>
<td></td>
<td>M03_2</td>
<td>1,8038</td>
<td>-1,0346</td>
</tr>
<tr>
<td>A (M03_2)</td>
<td>M04_1</td>
<td>1,5717</td>
<td>0,8543</td>
</tr>
<tr>
<td></td>
<td>M04_2</td>
<td>1,1078</td>
<td>-0,8444</td>
</tr>
<tr>
<td>B (M04_2)</td>
<td>M03_1</td>
<td>1,4467</td>
<td>-0,9909</td>
</tr>
<tr>
<td></td>
<td>M03_2</td>
<td>1,6837</td>
<td>-1,0424</td>
</tr>
</tbody>
</table>

Tab. 6: Vergleich der Validierungsergebnisse der 0°Oechsle bei unterschiedlicher Faktorenauswahl sowie unterschiedlich verteilten Datensätzen

Obwohl der CVE bei der Variante am Minimum geringer ist als bei der Variante am Maximum, zeigt sich in der Validierung, dass trotz höherem CVE in der Kalibrierung ein geringerer SE und Mean Bias in der Validierung auftreten kann. Um nun zu
verhindern, dass durch zu viele Filter das Geräterauschen mit einkalibriert wird, empfiehlt es sich, die Kalibrierung am Maximum durchzuführen.

5.4.2 Gesamtsäure

<table>
<thead>
<tr>
<th>Minimum</th>
<th>Datensatz</th>
<th>Filter</th>
<th>Faktoren</th>
<th>CVE</th>
</tr>
</thead>
<tbody>
<tr>
<td>normal</td>
<td>A (M03_1)</td>
<td>20</td>
<td>8</td>
<td>0,1147</td>
</tr>
<tr>
<td></td>
<td>B (M04_1)</td>
<td>20</td>
<td>8</td>
<td>0,1618</td>
</tr>
<tr>
<td>extrem</td>
<td>A (M03_2)</td>
<td>20</td>
<td>9</td>
<td>0,1222</td>
</tr>
<tr>
<td></td>
<td>B (M04_2)</td>
<td>20</td>
<td>7</td>
<td>0,1909</td>
</tr>
<tr>
<td>Maximum</td>
<td>normal</td>
<td>A (M03_1)</td>
<td>20</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>B (M04_1)</td>
<td>20</td>
<td>3</td>
<td>0,433</td>
</tr>
<tr>
<td>extrem</td>
<td>A (M03_2)</td>
<td>20</td>
<td>2</td>
<td>0,5374</td>
</tr>
<tr>
<td></td>
<td>B (M04_2)</td>
<td>20</td>
<td>3</td>
<td>0,4361</td>
</tr>
</tbody>
</table>

Tab. 7: Vergleich der Validierungen Gesamtsäure
von verschiedenen Kalibrierungen

Bei der Validierung zeigt sich, dass nach einer Slope/Intercept-Korrektur das Bestimmtheitsmaß R² durchweg besser ist, wenn die Validierung mit dem erweiterten Datensatz durchgeführt wurde. Ohne Korrektur zeigt sich bei der Kalibrierung am Minimum, dass auch hier die Validierung mit dem erweiterten Datensatz die bessere Übereinstimmung bringt, wohingegen bei der Kalibrierung am Maximum keine Tendenz zu erkennen ist (Tab 8). Die Validierungen mit den jeweils kleinsten Fehlern sind in Tabelle 8 farblich hervorgehoben.
<table>
<thead>
<tr>
<th>Kalibrierung</th>
<th>Validierung</th>
<th>Fehler vor Slope/Intercept-Korrektur</th>
<th>Fehler nach Slope/Intercept-Korrektur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Datensatz</td>
<td>Datensatz</td>
<td>SE</td>
<td>Mean Bias</td>
</tr>
<tr>
<td>Minimum</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A (M03_1)</td>
<td>M04_1</td>
<td>0,4728</td>
<td>-0,2651</td>
</tr>
<tr>
<td></td>
<td>M04_2</td>
<td>0,4535</td>
<td>-0,258</td>
</tr>
<tr>
<td>B (M04_1)</td>
<td>M03_1</td>
<td>0,2837</td>
<td>0,2286</td>
</tr>
<tr>
<td></td>
<td>M03_2</td>
<td>0,2803</td>
<td>0,2228</td>
</tr>
<tr>
<td>A (M03_2)</td>
<td>M04_1</td>
<td>0,415</td>
<td>-0,2267</td>
</tr>
<tr>
<td></td>
<td>M04_2</td>
<td>0,3992</td>
<td>-0,2218</td>
</tr>
<tr>
<td>B (M04_2)</td>
<td>M03_1</td>
<td>0,3549</td>
<td>0,3082</td>
</tr>
<tr>
<td></td>
<td>M03_2</td>
<td>0,3511</td>
<td>0,3012</td>
</tr>
<tr>
<td>Maximum</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A (M03_1)</td>
<td>M04_1</td>
<td>0,5491</td>
<td>-0,2613</td>
</tr>
<tr>
<td></td>
<td>M04_2</td>
<td>0,5801</td>
<td>-0,319</td>
</tr>
<tr>
<td>B (M04_1)</td>
<td>M03_1</td>
<td>0,5664</td>
<td>0,4181</td>
</tr>
<tr>
<td></td>
<td>M03_2</td>
<td>0,5377</td>
<td>0,3659</td>
</tr>
<tr>
<td>A (M03_2)</td>
<td>M04_1</td>
<td>1,1078</td>
<td>-0,8444</td>
</tr>
<tr>
<td></td>
<td>M04_2</td>
<td>1,1791</td>
<td>-0,9043</td>
</tr>
<tr>
<td>B (M04_2)</td>
<td>M03_1</td>
<td>0,5674</td>
<td>0,42</td>
</tr>
<tr>
<td></td>
<td>M03_2</td>
<td>0,5386</td>
<td>0,368</td>
</tr>
</tbody>
</table>

Tab. 8: Vergleich der Validierungsergebnisse der Gesamtsäure bei unterschiedlicher Faktorenauswahl sowie unterschiedlich verteilten Datensätzen

5.5 Kontrolle des Reifeverlaufs

In der Regel werden zur Bestimmung des optimalen Lesezeitpunktes die Trauben meist lediglich optisch begutachtet und einzelne Trauben verkostet und mittels eines Handrefraktometers im Weinberg die °Oechsle und damit der Zucker gehalt bestimmt. Da die optimale pyhsiologische Reife jedoch nicht nur vom Zucker gehalt abhängt,

In den vergangenen Jahren wurden zum Teil unreife Proben untersucht, um die Kalibrierung auf einen Bereich erweitern zu können, bei dem die verschiedenen
Parameter außerhalb der für reife Trauben üblichen Bereiche liegen. Somit kann auch bei unreifen, bzw. fast reifen Trauben eine Vielzahl an Parametern innerhalb kürzester Zeit untersucht werden, um den Reifeverlauf zu verfolgen.

![Diagramm der Säureabbau während der Reife](image)

Neben dem Reifeverlauf vor der Lese ist es auch denkbar innerhalb der Lesezeit den Reifeverlauf der Trauben zu beobachten, um die Trauben dann zu lesen, wenn diese einen Reifegrad erreicht haben, um eine bestimmte Weinqualität, z.B. Auslese oder Spätlese, daraus herstellen zu können.

5.6 Gärkontrolle

Beim Vergleich der 4 Varianten im Labormaßstab zeigt sich, dass alle 4 Moste innerhalb der gleichen Zeit durchgegoren sind, die Geschwindigkeit der Gärungen ist jedoch unterschiedlich. Während alle 3 Moste, welche mit Hefe versetzt worden sind, eine ähnliche Gärkurve aufzeigen, beginnt der Most ohne Hefe langsamer zu gären (Abb. 16), nach einer Woche haben jedoch alle Moste ein ähnliches Endstadium erreicht.

![Gärverlauf eines Mostes mit verschiedenen Hefen im Labormaßstab](image-url)
5.7 Konservierung von Mosten

Es wurden unterschiedliche Konservierungsmöglichkeiten durchgeführt und miteinander verglichen. Bei den Proben handelt es sich sowohl um eingefrorene, frisch hergestellte und sich in der Gärung befindende Moste. Die Proben wurden im jeweiligen Ausgangszustand untersucht und die restliche Probenmenge anschließend unterschiedlich behandelt. Einige Moste wurden eingefroren und nach dem Auftauen geteilt. Ein Teil wurde vor der Messung auf 80°C erhitzt, filtriert und abgekühlt, der andere Teil wurde nur filtriert. Die restlichen Moste wurden mit unterschiedlichen Mengen an Na-Azid oder Dimethyldicarbonat (Velcorin, Fa. Bayer) versetzt und ca. 30 Minuten nach der Behandlung mittels FTIR untersucht. Folgende Mengen wurden zugesetzt: 0,25g/L, 0,5 g/L und 1,0 g/L Na-Azid; bei Velcorin 0,1 g/L, 0,5 g/L und 1,0 g/L. Zusätzlich wurden einige Proben 24 h stehen gelassen und dann mit 0,1 g/L, 0,25 g/L bzw. 0,5 g/L Velcorin versetzt. Es wurden sowohl die Spektren als auch die Analysendaten miteinander verglichen.

Zusätzlich wurden Spektren von wässrigen Lösungen aufgenommen, welche die unterschiedlichen Zusätze enthielten. In diesen Spektren erkennt man, dass Na-Azid in einem Wellenzahlbereich von 1987-2103 cm⁻¹, Velcorin bei 1273-1331 cm⁻¹ und 1447-1485 cm⁻¹ und SO₂ bei 1003-1273 cm⁻¹ im Spektrum sichtbar ist.

Die eingefrorenen Moste wurden teilweise nach dem Auftauen nur filtriert und zum Teil nach dem Auftauen auf 80°C erhitzt. Hier zeigt sich, dass sich die erhitzten Proben nur unwesentlich von den Proben vor dem Einfrieren unterscheiden. Die nicht erhitzten
Proben hingegen weichen stark davon ab. Bei diesen Proben wurde durchweg sowohl weniger an Säuren als auch Zuckern gefunden.

Bei den Proben mit Na-Azid und Velcorin zeigt sich, dass es bei den verschiedenen Zeitpunkten und allen zugegebenen Mengen keine signifikanten Unterschiede, sowohl bei den angegebenen als auch bei den normalen Mosten zu den unbehandelten Proben gibt.

Für eine kurzzeitige Konservierung von kleineren Probenmengen, welche nur für die Analytik gebraucht werden, eignen sich hervorragend Na-Azid und Velcorin in bereits sehr geringen Dosierungen. Sollen die Proben jedoch länger aufbewahrt werden bzw. noch anderweitig verwendet werden, ist es am idealsten, die Proben tief zu kühlen und nach dem Auftauen auf 80°C zu erhitzen, um die als Kaliumtartrat ausgefallene Weinsäure und den auskristallisierten Zucker wieder in Lösung zu bringen.

5.8 Standardadditionen

Die Verdünnungsreihen wurden sowohl in wässriger Lösung als auch in rotem Traubensaft hergestellt. Im Traubensaft wurden zwei verschiedene Verdünnungsreihen hergestellt. Zum einen eine Verdünnungsreihe mit nur einer hinzu addierten Substanz, und eine weitere mit einem Gemisch an verschiedenen Substanzen (Essigsäure, Ethanol, Gluconsäure, Glycerin und Milchsäure), die alle in ungefähr gleichen Konzentrationen vorliegen.

Vergleicht man jetzt beispielsweise die Spektren der verschiedenen Einwaagen an Gluconsäure in Wasser untereinander, erkennt man in Abb. 17 Unterschiede zwischen den verschiedenen Proben. In den Wellenzahlbereichen von ungefähr 1600-1700*cm⁻¹ und 3010-3660*cm⁻¹ absorbieren die Schwingungen der Wassermoleküle (hier grau markiert). Diese Bereiche werden bei der Auswertung nicht berücksichtigt.

In den Bereichen zwischen 940-1550*cm⁻¹ und 2500-3000*cm⁻¹ sieht man jedoch deutliche Unterschiede in der Absorptionsstärke der verschiedenen Verdünnungen, da in wässriger Lösung in diesen Bereichen nur Molekülschwingungen der Gluconsäure registriert werden.
Sieht man sich hingegen die Additionsreihe von Gluconsäure in Traubensaft an, sieht man in Abb. 18 neben den typischen Bereichen für Wasserbanden (hier grau markiert), zahlreiche Bereiche, in denen die verschiedenen Inhaltsstoffe des Traubensafts absorbiert werden. Hier sieht man ebenfalls Unterschiede zwischen den einzelnen Konzentrationsstufen, jedoch treten diese nicht so signifikant hervor wie in den wässrigen Lösungen, da hier die Zugabe von Gluconsäure nur minimale Änderungen in Matrix hervorrufen.
Überprüft man nun die vorhandene Mostkalibrierung GrapeScanG2004 mittels einer Slope/Intersept-Korrektur, zeigt sich, dass sich Gluconsäure ab einer Einwaage von 1,5 g/L mit einem verhältnismäßig geringen Fehler bestimmen lässt. Unter 1,5 g/l ist die Vorhersagegüte des Gehaltes jedoch sehr ungenau (Abb. 19).
Ein Überblick über den Messbereich sowie die Abweichungen liefert Tabelle 9:

<table>
<thead>
<tr>
<th>Stoff</th>
<th>Messbereich (g/L)</th>
<th>Maximale Abweichung (g/L)</th>
<th>Minimale Abweichung (g/L)</th>
<th>Standardabweichung (g/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>von bis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Essigsäure</td>
<td>0,00 10,00</td>
<td>1,535</td>
<td>0,064</td>
<td>0,712</td>
</tr>
<tr>
<td>Ethanol</td>
<td>0,47 10,97</td>
<td>0,404</td>
<td>0,004</td>
<td>0,148</td>
</tr>
<tr>
<td>Gluconsäure</td>
<td>0,45 10,95</td>
<td>1,095</td>
<td>0,028</td>
<td>0,486</td>
</tr>
<tr>
<td>Glycerin</td>
<td>0,57 12,07</td>
<td>0,214</td>
<td>0,049</td>
<td>0,124</td>
</tr>
<tr>
<td>Milchsäure</td>
<td>0,00 9,70</td>
<td>0,105</td>
<td>0,006</td>
<td>0,054</td>
</tr>
</tbody>
</table>

Tab. 9: Standardadditionen in Traubensaft

5.9 Bestimmung von Ammonium und hefeverwertbarem Stickstoff

Um die Stickstoffversorgung der Trauben im Weinberg zu bestimmen und bei Unterversorgung eine Gärstörung durch Zugabe von Nährsalzen zu verhindern, wurde sowohl Ammonium als auch der Gehalt an hefeverwertbarem Stickstoff auf verschiedene Arten bestimmt, miteinander verglichen und anschließend als neuer Parameter in die Kalibrierung aufgenommen.

Der Stickstoffgehalt wurde 2002 mittels Titration der Formolzahl bestimmt. Da diese Methode jedoch aufgrund des Einsatzes von Formaldehyd sowohl gesundheitlich als auch umwelttechnisch nicht unbedenklich ist, wurde die Methode danach, trotz guter

Zur Bestimmung des Ammoniumgehaltes mittels „Easylab“ und dem Geisenheimer Testkit läßt sich die gleiche Aussage treffen wie bei der Bestimmung des FermN-
6. Diskussion

6.1. Bestimmung der Reife- und Gesundheitsparameter

Bei der Bestimmung der Reifeparameter (Dichte, pH-Wert, Zucker, Säuren) zeigt sich, dass diese Parameter inzwischen so gut kalibriert sind, dass man den Großteil von ihnen ohne Bedenken zur Beurteilung der Reife heranziehen kann. Bei den einzelnen Zuckern und Säuren ist der Fehler jedoch noch zu groß, sie können nur eine Einschätzung ermöglichen. Die Verhältniszahlen Glucose/Fructose sowie Weinsäure/Äpfelsäure können zur Reifebeurteilung herangezogen werden. Liegt ein Weinsäure/Äpfelsäure-Verhältnis mit einem Wert zwischen 1 und 2 vor, haben die Trauben ihre Reife bezüglich der Säure erreicht. Ist das Verhältnis kleiner 1, liegt noch zuviel Äpfelsäure vor und die Trauben sind noch nicht optimal reif. In extrem warmen Jahrgängen wie 2003 trat beim Großteil aller untersuchten Mostproben aufgrund der sehr geringen Menge an Säure und besonders an Äpfelsäure ein Weinsäure/Äpfelsäure-Verhältnis weit größer 2 auf. Liegt das Glucose/Fructose-Verhältnis zwischen 0,95 und ungefähr 1,05, so liegen Glucose und Fructose in ungefähr gleich großer Menge vor und die Trauben sind reif, ist das Verhältnis größer 1,05, so sind die Trauben noch unreif, bei einem Verhältnis kleiner 0,95, wurde bereits Glucose in größeren Mengen verstoffwechselt, was auf mikrobiologische Veränderungen durch glucophile Hefen hinweist. Um nun sowohl die Säuren und Zucker in die Beurteilung des Reifezustandes mit einzubeziehen, können weitere Verhältniszahlen wie °Oechsle/Gesamtsäure oder °Oechsle/pH-Wert gebildet werden. Es ist jedoch in jedem Fall erforderlich, nicht nur auf den einen oder anderen Parameter zur Beurteilung zu schauen, sondern auf die Gesamtheit der verschiedenen Parameter.

Bei den Parametern zur Bestimmung der Gesundheit (mikrobiologischen Parameter) gibt es noch größere Probleme. Da zum Großteil gesunde Trauben untersucht wurden, liegen bei Glycerin, Gluconsäure, Ethanol und Essigsäure nur sehr wenig Proben vor, die bei einer für den Reifezustand normalen Traubenqualität (QbA, Kabinett) erhöhte Werte bei diesen Parametern aufweisen. Auf Grund dessen lassen sich mit den bisher vorhandenen Kalibrierungen keine konkreten Aussagen über diese Inhaltsstoffe

Erstellt man jetzt mit Mostproben, welchen diese Inhaltsstoffe in größeren Mengen hinzuaddiert wurden, eine neue Kalibrierung, sieht man, dass sich hier die Ergebnisse bei Gluconsäure und Ethanol im Vergleich zur Kalibrierung GrapeScanG stark verbessert haben. Hier steht jedoch eine Validierung zur Überprüfung mit einem unabhängigen Datensatz aus.

6.2 Erstellung neuer Parameter

Bei den Mineralstoffen wurde versucht, Kalium, Calcium und Magnesium mit in die Kalibrierung mit einzubeziehen. Hier erkennt man jedoch, dass sowohl Calcium als auch Magnesium in einer zu geringen Menge vorliegen, um hier zumindest zu einem halbquantitativen Ergebnis zu kommen. Kalium hingegen liegt in einer ausreichenden Menge vor, um hier zumindest, ähnlich des N-OPA-Wertes und Ammoniums, eine halbquantitative Aussage treffen zu können. Mit Hilfe der Leitfähigkeit kann man jedoch, besser als die einzelnen Mineralstoffe, die Gesamtheit sowohl der Mineralstoffe

6.3 Vergleich verschiedener Faktoren

Kalibriert man einen neuen Parameter für die Mostkalibrierung GrapeScan2004G des FT 120, so wird empfohlen, bei der Faktorauswahl einen Faktor mit möglichst geringem CVE (Minimum) auszuwählen (Variante 1). Im Gegensatz hierzu wurde eine Kalibrierung erstellt, bei dem der Faktor ausgewählt wurde, der in CVE den größten Unterschied (Maximum) zum vorhergehenden Faktor hat (Variante 2).

In der Kalibrierung sieht man, dass bei der empfohlenen Vorgehensweise der Fehler sehr viel geringer ist als bei Variante 2. In der Validierung jedoch sieht man, dass beide Varianten ähnlich gute Ergebnisse liefern, bei Oechsle sind die Ergebnisse der Variante am Maximum teilweise besser.

Neben den „normalen“ Datensätzen wurden zusätzlich sowohl für die Kalibrierung als auch für die Validierung Probensätze verwendet, welche sehr unreife und überreife Proben enthalten. Zur Kalibrierung sollten diese Proben mit einbezogen werden, auch wenn es nur sehr wenige Werte sind und diese eventuell sogar mit einem größeren Fehler behaftet sind als die Proben, die im Bereich der normalen Mostqualitäten liegen. Somit erhält man für diese Bereiche ober- und unterhalb der normalen Mostqualitäten
eine bessere Vorhersage. In der Validierung erkennt man, dass bei Proben, die außerhalb der Kalibrierung liegen, die verschiedenen Parameter durchaus mit einem geringen Fehler berechnet werden können.

Es macht also keine großen Unterschiede in der Validierung, ob bei einer Kalibrierung der Faktor mit dem geringsten CVE oder der Faktor mit dem größten Unterschied im CVE zum vorhergehenden Faktor verwendet wird. Werden jedoch viele Faktoren bzw. Filter zur Erstellung der Kalibrierung verwendet, läuft man Gefahr, dass das Rauschen des einzelnen Spektren als relevante Wellenlängenbereiche angesehen und diese dann mit zur Kalibrierung herangezogen werden. Um dieses zu verhindern ist es nötig, mit so wenig Faktoren bzw. Filter wie möglich zu kalibrieren. Zur Stabilisierung der Kalibrierung und Erweiterung des Messbereiches sollten jedoch auch Proben verwendet werden, die außerhalb des Bereiches von normalen Mostqualitäten liegen.

6.4 Überprüfung des Reifeverlaufs

6.5 Gärkontrolle

Bei der herkömmlichen gravimetrischen Gärkontrolle wird über die Gewichtsabnahme des Gärgebines der entstandene Alkohol bzw. der noch vorhandene Zucker bestimmt. Außer dem Alkoholgehalt bzw. Zuckergehalt lassen sich jedoch keine anderen Parameter bestimmen. So ist es mit herkömmlichen Methoden (Dichte, Refraktion) nicht möglich, eine eventuelle Bildung von Essigsäure oder ein ungewollt einsetzender BSA zu erkennen.

6.6 Konservierung von Mosten

Für eine kurzzeitige Konservierung von kleineren Probemengen, welche nur für die Analytik gebraucht werden, eignen sich hervorragend Na-Azid und Dimethyldicarbonat in bereits sehr geringer Dosierung von 0,1 g/L. Sollen die Proben jedoch länger aufbewahrt werden bzw. noch anderweitig verwendet werden, ist es am idealsten, die Proben tiefzukühlen und nach dem Auftauen auf 80°C zu erhitzen, um die als Kaliumtartrat ausgefallene Weinsäure und den auskristallisierten Zucker wieder in Lösung zu bringen.

6.7 Standardaddition

Bei der Standardaddition in wässriger Lösung erkennt man bei allen Substanzen, dass in den Spektren selbst mit sehr geringen Probenadditionen voneinander unterscheiden.
Selbst bei der Addition von 0,01g/l erkennt man bereits Bereiche in den Spektren, in welchen die verschiedenen Substanzen spezifische Schwingungen aufweisen. Die Spektren der Standardadditionen in Traubensaft verhalten sich analog zu den Spektren den Additionen in Wasser. Hier sind die Unterschiede jedoch nicht so deutlich, da bereits aufgrund des „Grundspektrums“ des ursprünglichen Traubensaftes bereits in diesen Wellenlängenbereichen spezifische Schwingungen auftreten. Obwohl man in den Spektren bereits geringe Änderungen der Probenmatrix erkennt, ist es bei den sehr geringen Additionsmengen unter 1,0 g/L so gut wie unmöglich eine Kalibrierung zu erstellen.

6.8 Bestimmung von Ammonium und hefeverwertbarem Stickstoff

7. Zusammenfassung

Es wurde eine Vielzahl an Mostproben in den Jahren 1999-2004 sowohl mittels FTIR als auch mit den klassischen Referenzmethoden untersucht, um die ursprüngliche, aus Frankreich stammende Kalibrierung zu ersetzen und zu erweitern, um sie den deutschen Weinbauverhältnissen anzupassen. Ziel ist es, die Kalibrierung so stabil und zuverlässig zu gestalten, dass dieses System in Kellereien und Genossenschaften zur Eingangskontrolle und somit auch als Bezahlungsgrundlage für das Traubenmaterial verwendet werden kann.

Die Parameter zur Bestimmung der Reife lassen sich durchweg quantitativ oder zumindest halbquantitativ bestimmen. Die Dichte, °Brix und Gesamtsäure des Traubenmostes liefern mit einem Bestimmtheitsmaß größer 0,95, Werte, die als quantitativ angesehen werden können. Der pH-Wert, Apfel- und Weinsäure sowie Glucose und Fructose sind hingegen nur mit einem größeren Fehler bestimmbar. So muss man bei den Säuren mit einem Fehler von ca. ±0,7 g/L, bei den Zuckern von ca. ±5g/L rechnen. Der pH-Wert ist mit einer Standardabweichung ebenfalls in einem akzeptablen Bereich.

und Glycerin immerhin bereits halbquantitative Aussagen treffen, d.h. wenn erhöhte Werte vorhanden sind, werden diese auch angezeigt. Will man jedoch den genauen Gehalt, muss man ihn nochmals mit den klassischen Referenzmethoden bestimmen. Für Gluconsäure und Ethanol sind hier die Fehler noch zu groß. Um die Kalibrierung zu verbessern wurden gesunden Proben diese Verderbnisparameter zuaddiert. Erstellt man eine neue Kalibrierung mit diesen addierten Proben, so zeigt sich in der Kalibrierung eine Verbesserung. Diese neue Kalibrierung dieser Verderbnisparameter muss jedoch noch mit einem unabhängigen Datensatz, der ebenfalls erhöhte Werte für diese Parameter aufweist, validiert werden, um die Vorhersagegenauigkeit zu überprüfen.

Um Moste über einen längeren Zeitraum aufzubewahren und anschließend mit nur geringen Matrixveränderungen zu messen, eignen sich mehrere Methoden. Bei kleinen Mengen und über kurze Zeiträume besteht die Möglichkeit, Azid oder Velcorin in geringen Mengen zu addieren. Sollte die Probe länger aufbewahrt werden, kann man die Proben einfrieren. Diese müssen aber nach dem Auftauen auf ca. 80°C erhitzt werden, um die ausgefallene Weinsäure und andere mitgerissene Stoffe, wie auskristallisierten Zucker oder Kalium, wieder in Lösung zu bringen.

hefeverwertbare Stickstoff, der Ammoniumgehalt, Kalium und Leitfähigkeit, erweitert werden. Hiermit ist es nun möglich, eventuelle Mangelerscheinungen der Trauben zu erkennen und die notwendigen Maßnahmen für eine problemlose Weiterverarbeitung und Gärführung einzuleiten.

Mit Hilfe der Reife und Gesundheitsparameter ist es, neben der Erarbeitung einer objektiven Auszahlungsgrundlage, ebenfalls möglich, die Qualitätsstufe des Mostes zu bestimmen. Somit kann gezielt die geforderte Traubenqualität verarbeitet werden, um die gewünschten Weintypen herzustellen.

Ausblick

Die entwickelten Modelle betrachten die jahrgangstypischen Verhältnisse und sind nicht an fixe Faktoren gebunden. Dadurch kann man nach Abschluss der Ernte für jeden Standort Aussagen über die Qualität eines Jahrganges und einer Rebsorte machen.

Es wird die Übertragbarkeit auf andere Systeme geprüft. Zur Verbesserung der Vorhersage von Minorparameter wird zurzeit an einem neuen Algorithmus zur Variablenselektion gearbeitet.
8. Literature

Cozzolino, D; Smyth, HE; Gishen, (M 2003): Feasibility Study on the Use of Visible and Near-Infrared Spectroscopy Together with Chemometrics to Discriminate between Comercial White Wines of Different Varietal Origins; Journal of Agricultural and Food Chemistry, 51, 7703-7708

Davenel, A; Grenier, P; Foch, B; Bouvier, JC; Verlaque, P; Pourcin, J (1991): Filter Fourier transform infrared, and areometry, for following alcoholic fermentation in wines; Journal of Food Science, 1635-1638

Dubernet, M (2004): Pratique del l'IRTF dans les laboratoires d'oenologie; Revue Francaise d'Oenologie; 208, 31-34

Dubernet, M; Dubernet, V; Coulomb, S; Lerch, M; Trainneau, I (2001): Analyse objective de la qualité des vendanges par spectrométrie infrarougede Fourrier (IRTF) et réseaux de neurones; Bulletin des OIV, 839-840, 15-24

Dubernet, M; Dubernet, M; Dubernet, V; Coulomb, S; Lerch, M; Trainneau, I (2000): Analyse objective de la qualité des vendanges par FTIR et réseaux de neurones; Revue francaise d'Oenologie, 18-21
Dubernet, M; Dubernet, M (2000): Utilisation de l’analyse infrarouge à transformée de Fourier pour l’analyse oenologique de routine; Revue Francaise d'Oenologie, 10-13

Fischer, U; Berger, T; (2005): Rasche Bestimmung der Traubenzusammensetzung mittels FT-MIR-Spektrometrie; GIT Fachz.Lab., 2, 106-109

Fischer, U; Berger, T (2005): Bestimmung der Most Inhaltsstoffe mit FT-MIR Spektrometrie; Das Deutsche Weinmagazin, 14, 31-34

Gishen, M; Dambergs, B (1998): Some preliminary trials in the application of NIRS for the determining the compositional quality of grape, wine and spirits; Australian Grapegrower and Winemaker, 43-47

Inon, FA; Garrigues, S; de la Guardia, M (2004): Nutritional parameters of commercially available milk samples by FTIR and chemometric techniques; Analytica Chimica Acta, 513, S. 401-412

Patz, C-D, Blieke, A; Ristow, R, Dietrich, H (2004): Application of FT-MIR spectrometry in wine analysis; Analytica Chimica Acta, 513, 81-89

Patz, C-D; Hieber, M; Blieke, A, Giehl, A; Dietrich, H; Rheinberger, A (2004): Objektive Bestimmung der Traubenqualität mit FT MIR - Leistungsfähigkeit und Grenzen der Methode; Der Deutsche Weinbau, 14, 51-52.

Reichhard O (1972): Alkohol.- und Extraktafel 20°/20° zur Untersuchung von Bier, Wein Trinkbranntwein, Fruchtsäften, Zuckerlösungen, Limonaden u.a., Verlag Hans Carl, Nürnberg

Schneider, R; Charrier, F; Moutounet, M; Baumes, R (2004): Rapid analysis of grape aroma glycoconjugates using Fourier-transform infrared spectrometry and chemometric techniques; Analytica Chimica Acta, 513, 91-96

Sinclair, P; Blakeney, T; Batten, G; Blatt, R (1995): NIR: a cheap and rapid method to guide grapevine nutrition: Vine Nutrition, 21-25

